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ABSTRACT: One of the characteristics of synthetic biology is
that it often combines mathematical modeling with experimental
work. The link between modeling and experiments is carried out
by human researchers who have a conceptual understanding of
the underlying biological system. At present, there is no method
for representing a conceptual description that can be used to
connect mathematical models and experimental data, especially
sequence annotations, pertaining to the same underlying bio-
logical system. One reason for this limitation is that there can exist
different mathematical models of the same biological system. In
such cases, the same annotation in a DNA sequence would map
differently to different models of the same system. In order to
enable software support for synthetic biology, a software
framework is needed such that it is able to capture a conceptual
description of a biological system, including quantitative values, without confining itself to one mathematical model. The novel
use of hierarchical modeling inside TinkerCell (www.tinkercell.com) provides one potential software solution for representing a
“conceptual diagram” of a biological system. The conceptual diagram does not assume any underlying model. Rather, the diagram
is mapped automatically to one of several models. The diagram can then contain information relevant for both modeling and
experimental work. Computer-aided design (CAD) can be very useful to synthetic biology. CAD allows engineers to spend more
effort at the design stage and less at the construction stage by automatically performing many tasks that are currently performed
by human researchers. The ability to automatically link models and experimental results will be one step in the development of
practical CAD systems for synthetic biology.
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Synthetic biology is a highly interdisciplinary field that builds
on methods from various established areas of research. If one

would observe the laboratory practices in synthetic biology, one
might not find any real differences from laboratory practices
in molecular biology or microbiology. Similarly, if one looks
at mathematical analysis methods in synthetic biology, one
may find almost identical methods used in systems biology and
related fields. The combination of methods from different
disciplines channeled toward a common goal, engineering bio-
logical systems, is arguably a characteristic feature of synthetic
biology. However, the cost of such interdisciplinary research can
be lack of integration. A researcher who is an expert in molecular
biology techniques may have difficulty understanding all the
details of research performed by an expert in control theory (and
vice versa). Such lack of integration within an interdisciplinary
field can delay progress. Ideally, software tools should assist
researchers in bridging such gaps in knowledge. For example,
software tools that can show how parameters in a mathematical
model are related to sequence features on a DNA may help
researchers in one field better comprehend the research results
from another field.
Part of the reason why integration is difficult in software is

because of the variety of ways by which a biological system can be
represented. When a biological system is defined for the purpose

of dynamics systems analysis, researchers may opt to use ordinary
differential equations (ODEs) to define the system. When the
same system is being defined for the purpose of metabolic
engineering, the system might be represented as a stoichiometric
matrix.1 For the purpose of genetic engineering, a system might
be a represented using a well annotated DNA sequence. In
all of these cases, the underlying biology is the same, but the
representation is different. In much of synthetic biology research,
these different representations are used together. For example, in
order to explain the differentiation mechanism of B. subtilis, it was
necessary to combine the use of modeling with corresponding
changes to the DNA sequence.2 Use of logic gates in synthetic
biology combines the use of digital logic and DNA sequence
annotation.3 In order to use the ribosomal binding site (RBS)
strength calculator4 for designing a system, one must have the
sequence of the RBS as well as a quantitative model that utilizes
the RBS strength value to predict the dynamics of the system. All
of these examples demonstrate the need for integrating
sequence-level information with models.
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■ NEED FOR INTEGRATING SEQUENCE
INFORMATION WITH MATHEMATICAL MODELS

As synthetic biology advances, mathematical models and
experimental work would need to be tightly integrated in order
for research to progress efficiently. For example, recent work5

relating to the evolutionary stability of synthetic constructs
suggested that metabolic load and repeats in the DNA sequence
might be two key factors that determine the time taken for
natural selection to cause synthetic systems to malfunction. It
might be possible to predict the longevity of a synthetic system
using the result of such studies. However, in this particular
example, a predictive algorithm would need to use the DNA
sequence as well a mathematical model. The model would be
used to estimate the metabolic load, and the sequence would be
used to identify repeated sequences. Using two separate files as
input into the algorithm, i.e., one for the model and one for the
DNA sequence, might be prone to mistakes because any changes
in the model must correspond to a change in the DNA sequence.
Moreover, having two separate input files also limits the value of
the algorithm because the algorithm will not be able to auto-
matically adjust the DNA sequence and/or the model in order to
optimize the longevity of the synthetic system. Automatic
adjustments are not possible because a human is required to map
DNA sequence features to model components.

■ SHORTCOMINGS OF EXISTING METHODS

Integrating sequence information with mathematical models is
not as simple as adding additional annotations to existing file
formats such as the Systems BiologyMarkup Language (SBML7)
or GenBank.8 The SBML is a file format for representing chemical
reactions. It is possible to use the SBML representation to generate
stoichiometric matrices, ODEs, or stochastic models. Similarly, the
GenBank file format allows software tools to add arbitrary
annotations, which can be used to link a SBML file to a GenBank
file. The complication arises from the fact that the mapping
between sequence and models is not one-to-one. As an example,
let us use a system where a protein that is inhibiting its own
transcription, i.e., negative autoregulation (Figure 1). The

mathematical model for such a system would probably be the
same regardless of the exact protein that is used to construct the
real system. For example, one can use the LacI or the TetR
transcription factor to build the physical system, but the model in
both cases would be the same. Of course, depending on the choice
of transcription factor, the parameters in the model might vary, but
the basic structure of the model will not change. The DNA
sequence encoding the system using LacI will be entirely different

from the one using TetR, because the promoter region as well as
the CDS sequences will be different. This demonstrates the
existence of one-to-many mapping between the model and the
DNA sequence. Similarly, there is a one-to-many mapping in the
reverse direction as well. Suppose we are interested in building a
model for a system where LacI is inhibiting its own transcription.
We can opt to model this process using a single ODE, where the
production rate of LacI is a Hill function and the degradation rate
of LacI is a linear function of the LacI concentration. An alternative
way tomodel the same systemmight consist of twoODEs: one for
the LacI protein and one for the mRNA from which the protein is
translated. In yet another version of the model, we may opt to use
mass-action kinetics instead of Hill equations. Even for such a
simple system, the different ways of modeling can yield entirely
different simulated outcomes.9 Even though the models are
different, the underlying DNA sequence as well as many of the
other components will remain unchanged. This example
demonstrates that there are many ways to model the biological
system where LacI is inhibiting its own transcription. An SBML
file, arguably the most comprehensive way of capturing a
mathematical model of a biochemical system, can still represent
only a single mathematical model. Therefore, its formats fail to
capture the multiple biological mechanisms of negative autor-
egulation that might be possible. Similarly, a GenBank file can
capture only a specific implementation of negative autoregulation.
However, the DNA sequence itself does not capture the
mechanism of negative autoregulation. Herein lies the shortcoming
of existing methods: existing methods are good for capturing
specific aspects of a biological system, but none of them are
sufficient for capturing the overall concepts themselves, which is
what is required for uniting the specific aspects of the system.
Modular modeling methods, such as the ones provided by

Antimony10 and ProMoT11 software tools, can partially satisfy
the issues addressed above. For example, the Antimony model
definition language can define a module named “negative_autor-
egulation”, where a module is a model that can be reused inside a
larger model. The limitation of existing modular software tools in
synthetic biology is that the modules do not have a type; in other
words, there is no way to determine whether two modules
represent the same, or similar, biological mechanisms. The name
might provide some clue if the module is named appropriately by
the author, but a computer program cannot use the name to identify
the underlying mechanism that the module might represent.

■ A NEW APPROACH

We propose a new approach for representing the concepts of a
synthetic biology system. This approach uses four key features: a
custom ontology, hierarchical modeling, local parameters, and
parent/child relationships. These four features, when used
together, can be used to map sequence information to param-
eters in models and vice versa. Additionally, the approach can be
used to map the same conceptual model to multiple mathe-
matical models. Here, a mathematical model refers to a set of
reactions with specific reaction rate equations, which can be best
represented by an SBML file. The same method can also be used
to map experimental results to parameters or variables in models,
although this article will focus on just the integration of DNA
sequence information and mathematical models.

■ “CONCEPTUAL MODEL” VERSUS “MODEL”

In the context of this article, the term “model” refers to any
description of a system that is amenable to mathematical analysis.

Figure 1. Conceptual diagram of negative autoregulation. The labels
show the component class. For example, the CDS produces a protein.
This diagram can be represented using multiple mathematical models
because the biological process that produces the protein from the CDS
can be modeled in different ways. The symbols for the promoter,
operator site, RBS, and CDS used in this diagram are from the Synthetic
Biology Open Language (SBOL).6
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An SBML file is an example of a “model”, by this definition. It is
important to note that an SBML file can be simulated using
stochastic simulation algorithms, deterministic simulation
algorithms, or sometimes even Boolean simulation algorithms.
However, the mechanisms represented by each of those
algorithms is the same.
In the context of this article, the term “conceptual model”

refers to a description that does not specify the assumptions and
detailed mechanisms that are necessary to create a complete
model, such as an SBML file. The purpose of the conceptual
model is to act as the link between different types of analyses,
databases, and even experimental data. It is important to note
that the conceptual model does contain parameters. These
parameters reflect real measurable parameters rather than
mathematical model parameters. These parameters can be used
in different ways in different mathematical models.
Analysis of Conceptual Models at Present. One can

argue that it is possible to build minimal mathematical models
that reflect only the known interactions of a conceptual model.

For example, it is possible to describe gene regulation using a
single equation that reflects how the transcription factor(s)
influence transcription of a target gene. Although a simple
mathematical model might be sufficient to describe a large
number of cases, the problem in describing a conceptual model
with a single mathematical model is that we entangle the
assumptions of the mathematical model with the conceptual
model. Suppose we realize that it is necessary to include the
mRNA in the mathematical model in order to capture the
observed experimental data, then we cannot simply change the
mathematical model without changing the conceptual model.
Decoupling the conceptual model from the mathematical model
(in software) allows one to update the mathematical model
without changing the basic conceptual diagram of the system
under study.

■ OVERVIEW
The ontology provides the necessary terminology and structure for
labeling processes such as transcription regulation or enzyme catalysis.

Figure 2. Classes categorized as the biological entity and their inheritance relationships. The ontology is divided into three major classes, of which the
Biological Entity class describes any object that can act as a participant in a biological process. This figure shows almost all of the Biological Entity
families. The three main branches within the biological entity class are “container”, “part”, and “molecule”, each of which are further expanded in the
figure (shown by the black lines). In the figure, indentations indicate inheritance relationships. For example, at the bottom right, both “mRNA” and
“ribozyme” are subclasses of the class “RNA”. Some classes (e.g., “fluorescent protein”) are subclasses of multiple parent classes (e.g., “protein” and
“reporter”).
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Hierarchical modeling is used to map each process to one or
more specific models. Local parameters such as promoter
strength or protein degradation rates are used to map parameters
in one model to matching parameters in another model. Parent/
child relationships are used to group components of a system,
such as molecules that belong inside a cell, parts that belong
inside a composite part, or parts that belong on the same plasmid.
The details of each individual feature will be described in detail in
the next four sections.

■ ONTOLOGY

An ontology, for the purpose of the proposed method, is a
structured vocabulary that allows computer programs to give
meaning to terms by relating the terms to one another. There are
a handful of existing ontologies that are used to describe different
aspects of biological systems. Gene Ontology (GO12), Systems
Biology Ontology (SBO13), BioPAX,14 and Sequence Ontology
(SO15) are four examples of ontologies (or structured vocabularies)
that are used to describe gene functions, kinetics, biochemical
pathways, and DNA sequence features, respectively. The
method proposed in this work uses a custom ontology, but
the custom ontology, in the future, should be an extension or
combination of these existing ontologies. This section will
describe the basic features of the custom ontology and how
existing ontologies can be reused in future work to replace this
custom ontology.

The custom ontology used to achieve the goals of this article
consists of three main classes: biological entities, biological
processes, and participants. The class of biological entities refers
to molecules such as proteins, RNA, or metabolites as well as
DNA “parts” such as protein coding sequences, RBSs, promoters,
and operator sites. The class of biological processes consists of
reactions and regulations that involve two or more biological
entities. For example, transcriptional regulation is a biological
process involving a transcription factor and an operator site.
Similarly, enzyme catalysis is a biological process involving an
enzyme and two metabolites. The participants class describes the
role of a biological entity inside a biological process. For example,
in enzyme catalysis, the roles include catalyst, substrate, and
product. The substrate and product roles are associated with the
two metabolites, and the catalyst role is associated with the
enzyme. The biological entities class and the biological process
class may contain attributes, or values that provide additional
information about the entity or process. TheDNA sequence is an
example of an attribute that is present in all DNA parts. Similarly,
the dissociation constant is another attribute that will be present
in biological processes involving binding, such as allosteric
regulation and transcriptional regulation.
There are subclasses within the three major classes in the

ontology. The three main subclasses of biological entities are
molecules, DNA parts, and compartments. Subclasses of molecules
include proteins, RNA, and small molecules. Some classes can
belong to two or more parent classes. For example, the class

Figure 3. Classes categorized as the Biological Processes and their inheritance relationships. The ontology is divided into three major classes, of which
the Biological Process class describes regulations and regulations involving biological entities as participants. Twomain classes, “1 to 1” and “regulation”,
that are subclasses of the Biological Process class are further expanded in the figure. The “1 to 1” class represents processes where only twomolecules are
involved, and the “regulation” class represents processes such as catalysis, repression, or upregulation. In the figure, indentations indicate inheritance
relationships. For example, at the top right, both “transcription activation” and “transcription repression” are subclasses of the class “transcription
regulation”.
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named f luorescent proteins is a subclass of proteins and reporter
molecules. Subclasses under the class of DNA parts include
promoters, RBS, coding region (synonym: CDS), operator, and
transcriptional terminator (synonym: terminator). The class
names can have synonyms. For example, parts and DNA parts
are synonyms for the same class. Figure 2 shows the complete set
of classes in the biological entities category.
The class of biological processes is divided into two major

categories: reactions and regulations. The category of reactions
are represented by several classes: “1 to 1”, which represents
processes involving two molecules, “1 to 2” and “2 to 1”, both of
which represent processes involving three molecules, and so on
(see Figure 3). Regulations consist of enzyme catalysis, allosteric
regulation, and transcriptional regulation. Two major subclasses
of regulation are repression and activation. Some classes may have
more than one parent class. For example, transcriptional
repression is a subclass of transcriptional regulation and repression,
and allosteric activation is a subclass of allosteric regulation and
activation. Biological processes can also contain parameters. For
example, the process named transcriptional regulation would
contain a parameter called Kd, the dissociation constant for the
transcription factor. Similarly, enzyme catalysis consist of two
parameters: Km, the Michaelis−Menten constant, and Kcat, the
catalytic constant. Note that these parameters do not imply a
mathematical model. They can be used in the context of
mathematical modeling, but the reason that the parameters are
defined within the ontology is so that parameters from one
mathematical model can be mapped to parameters in another
mathematical model for the same underlying system. Moreover,
some of these parameters can be measured experimentally, and
therefore, the ontology can be used to connect experimentally
measured values to the appropriate parameters in mathematical
models. Figure 3 shows the complete set of classes under the
biological process category.
The class of participants has far fewer subclasses when

compared to the class of biological entities or biological processes.
Participants include roles that biological entities take inside a

biological process. Some of these roles include regulator target,
catalyst, reactant, and product. The participant classes also follow a
hierarchical structure. For example, activator and repressor are two
classes that are subclasses of regulator class, and substrate is a
subclass of the generic reactant class.

Relationship to Existing Ontologies. There are a few
ontologies that are used in the fields of systems biology and
bioinformatics, with Gene Ontology (GO12), Systems Biology
Ontology (SBO13), and BioPAX14 being three prominent ones.
Of these three, the custom ontology described in this article is
most similar to the BioPAX standard, which is used to represent
biochemical pathways. BioPAX defines biological processes in

Figure 4. A conceptual diagram of negative autoregulation and different ways of generating a complete mathematical model. In this diagram, there are
two main processes: the CDS producing the protein and the protein regulating the promoter via the operator site. There are different ways to
mathematically model each of these processes. In other words, each process can be mapped to one of many mathematical models. Using hierarchical
modeling and ontologies, such mapping from a conceptual model to more specific models is possible.

Figure 5. Automatic mapping of a simple conceptual model to a specific
model. The conceptual model (bottom left) simply indicates that an
enzyme nameds Hex is converting a molecule called Glu to GluP. The
conceptual model is annotated using the ontology (not shown in
diagram). A software tool is able to take a specific model of enzyme
catalysis (top left) and automatically map components and parameters
in the conceptual model to variables in the specific model.
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terms of participants, hence the similarity. However, BioPAX
does not define parameters for biological processes. Further,
the biological entities in BioPAX do not include all of the
entities that are required in synthetic biology, such as the class
of DNA parts. The other two ontologies, GO and SBO, do not
define the participants that comprise a biological process, and
for that reason, they cannot be used to achieve our goals. Note

that SBO does define parameters, and therefore, there is some
overlap between SBO and the custom ontology that we have
proposed.

An Example Where Existing Ontologies Fail. Consider a
relative simple example where transcription factor X acts as a
repressor for promoter region P, and the kinetics of that
repression is captured by the dissociation constant Kd. This is a
conceptual model because it is neither a physical construct nor a
mathematical model. It can be mapped to specific physical
constructs, e.g., the LacI protein being used in the place of X and
the pLac promoter for P. Similarly, it can be mapped to a specific
set of reactions for generating a mathematical model. The GO
can identify this process as a “negative regulation of RNA
polymerase II transcriptional preinitiation complex assembly”.
However, GO alone would not allow a software tool to make the
association between X and LacI because GO would only provide
a description for the whole process and not its individual
participants. A software tool that uses GO to label this specific
process would not be able to determine the fact that LacI cannot
be mapped to P. BioPAX can identify the repression as a process
called “TemplateReactionRegulation” with X being the con-
troller and P being the controlled participant, and thus, BioPAX
can provide sufficient information for mappingX to LacI and P to
pLac. However, the kinetic description, Kd, cannot be captured
using the BioPAX formalism (and GO as well). SBO can be used
to capture the Kd value and its biological meaning, but like GO,
SBO does not contain any information that allows a software tool
to map X to LacI. The inability to perform such mappings makes
these ontologies inadequate for hierarchical modeling where
abstract designs need to be mapped to specific models or specific
physical constructs.

■ LOCAL PARAMETERS

Mathematical models (e.g., in the form of ODEs) are generally
defined using global parameters, or parameters that belong with
the model. In the SBML format, local parameters behave
differently from global parameters because local parameters
cannot be accessed globally. In the proposed framework, all param-
eters are locally defined but globally accessible. In other words,

Figure 6. Automatic mapping of a simple conceptual model to multiple
specific models. The conceptual model indicates that an enzyme names
Hex is converting a molecule called Glu to GluP.With the support of the
ontology the components in the conceptual model can be mapped to
variables in the specific model. The specific model can be defined in any
modeling format, e.g., SBML. The criteria is that the variables and
parameters in the specific model must match the participant roles in the
ontology. Note that the additional variables, such as the intermediate
complexes, are child items of the process called J1, hiding them from the
conceptual diagram.

Figure 7. Conceptual diagram created using TinkerCell. TinkerCell implements hierarchical modeling, supported by an ontology. This feature allows
TinkerCell to map conceptual models such as this quorum sensing model to multiple mathematical models. Each complete mathematical model can be
exported as a SBML file or MATLAB code or simulated within TinkerCell, using the COPASI systems biology package.16
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local parameters behave similar to normal parameters except for
the fact that they contain a prefix that describes their origin. For
example, the strength of Promoter part P1 will be named
P1sṫrength (P1_strength is also appropriate). Similarly,
the dissociation constant associated with a biological process
named reg1 will be named reg1K̇d (or reg1_Kd). In this sense, all

parameters are associated with some model component. While
this created restrictions on parameter names in a model, there is a
clear advantage from the point of view of databases. Suppose a
software program is trying to load a promoter part from a
database and wants to update the values of the corresponding
mathematical model. If the parameters are named without any

Figure 8. A higher-level conceptual diagram of protein production is mapped to two potential mathematical models. This is a simple example, but the
general idea is applicable to larger and more complicated cases. The parameters in the conceptual model are the promoter strength and RBS strength.
One of the mathematical model does not contain the mRNA intermediate, and therefore, for that particular model, the rate of production of the protein
is determined by the product of the RBS strength and promoter strength (note that mRNA degradation is assumed to be 1/min in this case). Of course,
the TinkerCell user can edit any of these default equations or can create an entirely new mathematical model for the protein production process.

Figure 9.Different mathematical representations of the same conceptual diagram can result in qualitative differences as well as quantitative difference in
the analysis. The set of graphs shown here are the outputs from a TinkerCell add-on that automatically generates different possible mathematical models
from the same conceptual diagrams and performs the necessary parameter mappings. These graphs represent different possible behaviors for the
negative autoregulation system shown in Figure 4 depending on the details of the mathematical model.
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convention (e.g., k1, k2, k3), it is practically impossible to
determine which parameter should be updated. In contrast, with
the proposed method, it is relatively simple to find all parameters
associated with a specific promoter: suppose the updated
promoter was named P1, then the software program simply
needs to update all parameters that have the prefix P1. or P1_.
Local Parameters Are a Way of Organizing a Model.

The notion of a local parameter, as provided in the previous
paragraph, is intended to be quite simple. From a computer
science point of view, the concept is comparable to the difference
between object-oriented programming and functional program-
ming. In object-oriented programming, a function (or method) is
called through the class that contains that function, e.g.,
“V.func()”, whereas in functional programming languages, the
same program can be written without any classes, and the
function would simply be called by a programmer-defined name,
e.g., “funcV() or Vfunc()”. While any object-oriented code can
be converted to functional code, the additional layer of
organization that object-oriented methodology provides makes
it appealing and is one reason why it has become the more
popular means of programming. The idea of local parameters is
analogous.
Parameter Names Are Provided by the Software Tool.

It is important to note that a user would not write the complete
parameter names, e.g., “P1k ̇1”. Rather, the user would only define
the individual names, “P1” and “k1”. The software tool that is

generating the models would automatically generate the com-
plete parameter names. This automation is necessary in order to
avoid inconsistencies in the names.

■ HIERARCHICAL MODELING

Hierarchical modeling is used to represent a conceptual, or high-
level, description of a model. A gene negatively regulating itself is
an example of a conceptual model (Figure 4). This description is
a conceptual model because the negative regulation can occur via
different mechanisms, and each mechanism would require a
different model. For example, the interaction between the
transcription factor and its target operator site can be described
using two separate reactions representing the binding and
unbinding of the transcription factor, or the same process can be
described using a single Hill equation. Both approaches are
useful, depending on the purpose of the mathematical model.
However, the DNA sequence for implementing a specific
negative autoregulation would remain unchanged in either
case because the DNA sequence does not contain the mecha-
nistic details.

Automatic Mapping to Multiple Models. Hierarchical
modeling is used in conjunction with the ontology to provide
mapping from complete models to complete mathematical
models. The basic idea behind performing this mapping is tomap
individual biological processes to predefinedmodels, where these
predefined models can be SBML files, ODE equations, or any

Figure 10. Modular feedforward networks used inside a larger network. A feedforward network can be considered a “module” because of its specific
input-output response. Assuming that this behavior is preserved when one connects the module to another genetic circuit, it is possible to design larger
systems using such modules. This TinkerCell screenshot shows how a user can design complex networks using modules. The boxes in this screenshot
contain feedforward networks within them. If needed, the user can double-click on the icons to see and edit the individual modules.
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other form of complete model. Figure 5 shows how this is
accomplished for one biological process. In this figure, the
conceptual model is just one process, enzyme catalysis. The
participants include one enzyme, named Hex, and two
metabolites, named Glu and GluP. The conceptual model
must be supported by an ontology in order to generate the
complete model automatically. The ontology would describe the
term “enzyme catalysis” as a process involving a catalyst, which
belongs to the class enzyme; a substrate, belonging to class
molecule; and a product, belonging to class molecule. Additionally,
this process also contains two parameters:Km andKcat. Any pre-
definedmodel that uses the three variables catalyst, substrate, and
product and the two parameters Km and Kcat is a valid candidate
model for automatic mapping. Figure 6 shows how one
conceptual model can be mapped to multiple candidate models.
Note that the individual models have additional variables and
parameters. For example, the intermediate enzyme−substrate
and enzyme−product complexes exist in the complete model but
not the conceptual model. Further, the different models would
have additional parameters for the additional reactions that are
not visible in the conceptual model. All of these additional details
are treated as child components and parameters, which is
discussed in the next section.
Automatic Mapping of Parameters. In order to map

parameters between models, the individual models, such as the
ones shown in Figures 5 and 6, must use the parameter names
defined in the ontology. In the example shown in Figure 6, the
ontology defines two parameters for the Enzyme Catalysis
process: Km and Kcat. The submodels shown in Figure 6 can

choose to use these parameter names in different ways, depend-
ing on the assumptions of each model. However, it is assumed
that the person creating these submodels understand the
biological meaning of the two parameters and will use the
parameters in a way that reflects their biological significance.
A submodel may choose to ignore one ormore of the parameters.

■ PARENT/CHILD RELATIONSHIPS
The parent/child relationship between components of a conceptual
diagram is essential for describing physical aspects of biolog-
ical system. Examples include molecules inside a cell, where
the cell is the parent component that contains the molecules,
or DNA parts on a plasmid, where the plasmid is the parent
component. For the purpose of synthetic biology, composite
parts, or parts composed of multiple parts, is another case where
parent/child relationship is needed to describe the physical
structure of the DNA appropriately.
The parent/child relationship is also necessary for supporting

certain aspects of hierarchical modeling. Hierarchical modeling,
as it is used in the proposed framework, allows connecting a
general model to one or more specific models. Returning to the
example as the one shown in Figure 6, suppose that we choose to
model the enzyme catalysis using one intermediate complex.
When using this approach, an additional molecular species, i.e.,
the enzyme−substrate intermediate complex, would need to be
included in the model that does not exist in the original
conceptual model. This additional component will be a child, or
subcomponent, of the enzyme catalysis process (named J1 in
Figures 5 and 6). The reason for making this complex a child

Figure 11. TinkerCell screenshot showing a modular network composed of two coupled oscillators. Each square block represents an oscillator with
three participants. Suppose an engineer is interested in connecting one oscillator to another and is not interested in the specific details of each oscillator.
This diagram captures the high-level description of a system that the engineer is interested. Each oscillator can be mapped to one or more specific
mathematical models or constructs representing specific oscillator designs. The small window in the figure shows the user how one of the oscillators is
implemented, which the user can replace without affecting the conceptual model.
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component is because the complex only comes into the model if
we choose a specific type of modeling approach, and therefore,
this complex cannot be part of the generalize model shown in 1,
which is supposed to map to multiple modeling approaches. The
parent/child relationship is an integral feature for supporting
hierarchical modeling because it is essential for representing
intermediate complexes that exist in onemodel but not the other.

■ IMPLEMENTATION
The software tool TinkerCell17,18 is a demonstration of an
integrated framework that combines sequence features with
mathematical models via the use of ontologies, hierarchical
modeling, local parameters, and parent/child relationships.
Figure 7 shows an example of a conceptual model created
using TinkerCell. Note that this figure combines aspects of a
physical construct, such as the plasmids, which may not be
relevant for a mathematical modeling. A parameter, such as
promoter strength, can be traced back to a DNA sequence on the
plasmids, and therefore, when a user changes the plasmid
sequence, it is possible for TinkerCell to relate the change in
sequence back to specific parameters in a mathematical model.
Each arc in the figure represents a biological process that can be
mapped to one or more mathematical models. The complete
model can then be simulated within TinkerCell itself, using the
COPASI package,16 or exported to SBML or MATLAB code.
Quorum Sensing Example. Figure 7 is a typical example of

a conceptual diagram that can be represented using the frame-
work described in this manuscript. The figure was generated
using the TinkerCell software tool; the additional labels on the
figurebinding affinity, plasmid replication rate, cell growth

rate, Michaelis−Menten constants, RBS strength, promoter
strength, and time of inductionare not part of the original
TinkerCell screenshot. These additional labels show some of the
parameters associated with the conceptual model itself. For
example, the plasmid replication rate is a parameter that
describes some physical aspect of the plasmid (i.e., the replication
origin). This parameter might be used in different ways in
different mathematical interpretations of the conceptual model.
These parameters are the local parameters because they are
associated with some component. The parameters describing the
dynamics of individual processes, such as the enzyme catalysis,
are also local parameters because they belong with that particular
process. The parent/child relationship is somewhat obvious in
this example: all of the DNA parts on the plasmid are children of
the plasmid. Similarly, the plasmid itself is a child of the cell that it
resides in. The reactions and regulations within a cell are also
children of that cell. This particular model includes some
additional detail, such as the step function (labeled as “time of
induction” in Figure 7). The step function describes how the
IPTG molecule is administered into the system. In the next
section, the mapping of local parameters to multiple
mathematical models will be explained.

Mapping to Two Mathematical Models of Protein
Production. The production of a protein from a gene requires
an mRNA intermediate. However, when modeling the process
mathematically, it is not always necessary to include this
intermediate.19 TinkerCell allows for this flexibility. As shown
in Figure 8, the parameters in the conceptual model are auto-
matically mapped to the lower, more detailed, models. In this
example, the parameters include promoter strength and RBS

Figure 12. Simulated output from modular network composed of two coupled oscillators shown in Figure 11. The different mathematical models are
generated automatically by mapping each oscillator process to two predefined oscillator models (thus a total of four possible combinations).
Interestingly, one of the combinations (cluster 4) results in one oscillator controlling the frequency of the other (for the default parameter set).
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strength. In the model without mRNA, the protein production
rate is a function of both parameters. This mapping is auto-
matically performed by TinkerCell because the ontology describes
“protein production” using two parameters: transcription rate and
translation rate. Because the biological meaning of these parameters
are understood by the software (via the ontology), it is possible to
map the promoter strength parameter to transcription rate and RBS
strength to translation rate.
In order to map parameters between models, the individual

models, such as the ones shown in Figures 5 and 6, must use the
parameters names defined in the ontology. In the example shown
in Figure 6, the ontology defines two parameters for the Enzyme
Catalysis process: Km and Kcat. The submodels shown in Figure
6 can choose to use these parameter names in different ways,
depending on the assumptions of each model. However, it is
assumed that the person creating these submodels understand
the biological meaning of the two parameters and will use the
parameters in a way that reflects their biological significance. A
submodel may choose to ignore one or more of the parameters.

■ REPRESENTING MODULES

The capability to represent conceptual diagrams automatically
enables another feature: modules. Modules, in this context, are
subnetworks of a larger network. Additionally, they have some
human-defined interpretation. For example, a bistable region of a
larger network can be considered a module. Similarly, an
oscillatory component of a network can be considered a module.
The advantage of using modules to construct models is that it
makes a large model more understandable to humans. For
example, Figure 10 shows two feedforward networks controlling

the production of a fluorescent protein. The feedforward net-
works are treated as modules, which makes the diagram more
understandable visually. If the entire network were pre-
sented as a single piece, it might be difficult for a viewer to
decipher the overall purpose and structure of the diagram. The
ability to create conceptual diagrams automatically enables Tinker-
Cell to support modules such as the ones shown in Figure 10.
Figure 11 shows another example where one oscillator is used as
an input for another oscillator. This conceptual design is useful
when an engineer is interested in connecting two oscillators and
is not interested in how each oscillator is implemented. See also
Figure 12.

■ CONCLUSION

Synthetic biology is a highly interdisciplinary field, requiring
individuals from different disciplines to come together to solve
similar challenges. One role of software is to assist in this
integration process. Different disciplines have different ways of
representing a biological system, but the fundamental biological
concepts in each of those representations are the same. Hence,
we realized that a software methodology that can integrate
different representations should try to capture the concepts.
While there may be different ways to represent biological con-
cepts, we have demonstrated one successfully implemented
approach. The approach relies on hierarchical modeling and
ontologies. The use of ontologies is needed in order to map
between concepts and models. The use of hierarchical modeling
needed to map from generic diagrams to details within different
regions of that diagram. Additional requirements of the method
presented in this article are local parameters and parent/child

Figure 13. Representing experiments in TinkerCell. This screenshot shows a process where some experiment was performed on an engineered cell in
order to obtain some data. This screenshot demonstrates that an “experiment” is simply another type of process, just like all of the other biological
processes. Its participants include a cell and a piece of data, the results of the experiment. The experiment itself will have a type, e.g., “fluorescent
microscopy movie” or something of that sort. The data would also have a type. The program TinkerCell currently supports the basic framework for
creating such diagrams, but no functions are available for performing any sort of analysis on this type of diagram.
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relationships between components in a diagram. The use of local
parameters is needed, once again, for mapping between different
mathematical models.
While our demonstration software application, TinkerCell, is

primarily a mathematical modeling tool, the method presented in
this article can be used to bridge mathematical models with
experimental data. The first steps toward integrating exper-
imental data are shown in Figure 13. The figure describes the
process of taking a cell with some dynamics and performing some
type of experiment in order to obtain data. The experiment itself
can be categorized using a detailed ontology, and similarly the
type of data can also be categorized. In this manner, it would be
possible for a software tool such as TinkerCell to store the
necessary details for generating mathematical models as well
as connecting variables and parameters in those models to
experimental data. Further, it would be possible to connect the
samemodel to multiple experiments (and vice versa) because the
conceptual diagram can act as the orchestrator.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: deepakc@uw.edu.

Notes
The authors declare no competing financial interest.
Relationship to Prior Publications on TinkerCell. The
previous publications on TinkerCell17,18 did not describe
hierarchical modeling because TinkerCell was quite different at
the time of those publications. The concepts discussed in this
article have not been published before.

■ REFERENCES
(1) Copeland, W., Bartley, B., Chandran, D., Galdzicki, M., Kim, K.,
Sleight, S., Maranas, C., and Sauro, H. (2012) Computational tools for
metabolic engineering. Metabolic Engineering 14, 270−280.
(2) Cagatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., and
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